

INSTRUCTION

GoBio Mini NTA GoBio Mini IDA

The ready-to-use GoBio™ Mini NTA and GoBio Mini IDA columns are prepacked with WorkBeads™ 40 NTA and WorkBeads 40 IDA resins, respectively, and are available in two column sizes, 1 mL and 5 mL. These columns can be charged with several divalent or trivalent transition metal ions (e.g., Ni2+, Co2+, Cu2+, Zn2+, Fe2+ or Ga2+) to obtain Immobilized Metal Ion Affinity Chromatography (IMAC) columns with different selectivity for polyhistidine-tagged (His-tagged) proteins or other metal ion binding proteins. Columns charged with Fe³⁺ and Ga³⁺ ions can be used for purification of phosphorylated peptides and proteins. Metal ion charged GoBio Mini columns can be used to purify up to 70 mg and 350 mg protein using respectively a 1 mL or 5 mL column. The columns can also be used in their uncharged state for removal of the mentioned metal ions from solution.

- Prepacked ready-to-use columns fast and reliable
- Prepared columns ready to be charged with the metal ion of choice
- High binding capacity and purity

Intended use

WorkBeads resins are developed and supported for both research and production-scale chromatography. WorkBeads resins are produced according to ISO 9001:2015, and Regulatory Support Files (RSF) are available to assist the process validation and submissions to regulatory authorities.

The GoBio prepacked column family has been developed for convenient, reproducible, and rapid results and can be used for small scale purification and all the way up to process development and full-scale manufacturing.

Safety

Please read the Safety Data Sheets (SDS) for WorkBeads 40 NTA and WorkBeads 40Q IDA, and the safety instructions for any equipment to be used.

Unpacking and inspection

Unpack the shipment as soon as it arrives and inspect it for damage. Promptly report any damage or discrepancies to complaints@bio-works.com

Short protocol

This short protocol includes both charging the resin with metal ions and performing a protein purification using IMAC. Recommended buffers are listed in Table 3 and recommended metal salts for charging are listed in Table 2. Detailed instructions and recommendations for optimization are provided later in this instruction.

- 1. Connect the column to the chromatography system, syringe or pump.
- 2. Wash the column with 5 column volumes (CV) deionized water.
- 3. Charge the column by applying 2 CV 50 mM metal solution in deionized water.
- 4. Wash the column with 10 CV deionized water.
- 5. Equilibrate the column using 10 CV binding buffer.
- 6. Apply a clarified sample in the pH range 7 8.5. The sample should contain 10 mM imidazole.
- 7. Wash the column with 20 30 CV washing buffer.
- 8. Elute the target protein.
 - Alternative 1: Desorb the target protein with 5 CV elution buffer.
 - Alternative 2: For increased purity, gradient elution is recommended. For example, a gradient from 10 mM to 300 mM imidazole over 20 CV can be applied.
- 9. Wash the column with 5 CV deionized water to remove the elution buffer.
- Equilibrate the column with 5 CV 20% ethanol for storage. Close the column using the included cap and plug.

Principle

IMAC utilizes the affinity of histidine, cysteine and tryptophan amino acid side chains on the protein surface for binding to transition metal ions, such as Ni²⁺, Co²⁺, Cu²⁺ and Zn²⁺, immobilized via a metal chelating ligand on the chromatography resin. WorkBeads resins are available with nitrilotriacetic acid (NTA) or iminodiacetic acid (IDA) chelating ligands as illustrated in Figure 1.

Figure 1. Structure of the chelating ligand used in WorkBeads 40 NTA (A) and WorkBeads 40 IDA (B) resins.

IMAC is commonly used for the purification of recombinant His-tagged proteins. The His-tag is usually composed of six to ten histidyl groups and is typically placed at the N- or C-terminus of the target protein, although other positions are possible. His-tagged proteins will bind to the chelating ligand (through the metal ion) and unbound material will pass through the column. Bound proteins are desorbed by stepwise or gradient elution using a competing agent, or by applying a low pH buffer. GoBio Mini Ni-NTA columns are recommended as the primary choice for Histagged protein purification and usually will give excellent results. For more difficult purifications, a screening is recommended using the eight available different pre-charged WorkBeads IMAC resins to find the optimal combination of ligand and metal ion, see "Related products."

Bio-Works also offer two different screening kits with pre-charged WorkBeads IMAC resins prepacked in GoBio Mini 1 mL and 5 mL columns.

Imidazole is recommended for elution. This is the most common used competing agent but histidine, ammonium chloride or histamine can also be used. Before sample application the column should be equilibrated with a low concentration of the competing ligand to prevent non-specific binding of endogenous proteins that may bind via histidine clusters for example. This can easily be done using the recommended binding buffer.

Elution with a continuously decreasing pH gradient is an alternative to imidazole and after optimization a pH step gradient may be more appropriate for scale-up. At pH 3-5, the histidine residues (p K_a approx. 6) are protonated which leads to the loss of affinity for the metal ion and thus to the release of the protein. It is important to consider the target protein stability at low pH.

Instructions

Purification can be carried out at room temperature or at temperatures down to 4°C. Operation at a low temperature may require a reduced flow rate due to the increased viscosity of the buffer. All steps can be carried out with a syringe, a peristaltic pump or a chromatography system. If the chromatography system has a pressure limit functionality, set the maximum pressure over the column to 3 bar (remember to take the system fluidics contribution to the pressure into account).

1. Prepare the sample

After cell disruption or extraction, clarify the sample by centrifugation at $10\,000-20\,000\times g$ for 15-30 minutes. It is generally recommended also to pass the sample through a $0.22-0.45\,\mu m$ filter (e.g., a syringe filter) to avoid inadvertently applying any remaining particles onto the column. If the sample contains only small amounts of particles, it may be enough only to carry out filtration. Application of a sample that has not been properly clarified may reduce the performance and lifetime of the column. The sample should be applied under conditions similar to those of the binding buffer. Add imidazole to the sample to have the same concentration as in the binding buffer.

2. Connect the column

Cut off or twist off the end at the outlet of the column, see Figure 2. **Note:** It is of high importance to cut off the tip at the very end of the cone, preferable using a scalpel. Incorrect removal of the end piece will affect the performance of the column.

Connect the column to your equipment using the recommended connectors shown in Table 1. Fill the equipment with deionized water or buffer and make drop-to-drop connection with the column to avoid getting air into the column. Carry out all steps, except for sample application, at 1 mL/min (GoBio Mini 1 mL column) or 5 mL/min (GoBio Mini 5 mL column).

Figure 2. Removal of the cut-off end at the column outlet should be done by cutting or by twisting (A) not bending (B).

Table 1. Recommended connectors for coupling GoBio Mini columns to the equipment of choice.

Equipment	Accessories for connection
Syringe	Female luer/male coned 10 - 32 threads
Chromatography system	Fingertight connectors (coned 10 - 32 threads) for 1/16" o.d. tubing

3. Remove the storage solution

The column contains 20% ethanol on delivery. This storage solution should be washed out before use. Wash the column with 5 CV deionized water or buffer. Avoid flow rates higher than 2 mL/min for GoBio Mini 1 mL columns or 10 mL/min for GoBio Mini 5 mL columns before the storage solution has been removed to avoid overpressure due to high viscosity of the 20% ethanol solution.

4. Charge the resin

Charge the resin with the metal ion of choice by applying approximately 2 CV 50 mM metal ion solution in deionized water. See recommended salts in Table 2.

Table 2. Recommended metal ions salts for charging. Other metal salts can possibly be used.

Metal ion immobilized	Metal salt recommended
Ni ²⁺	50 mM Nickel(II) sulfate
Co ²⁺	50 mM Cobalt(II) sulfate
Cu ²⁺	50 mM Copper(II) sulfate
Zn²+	50 mM Zinc(II) sulfate
Ga ³⁺	50 mM Gallium(III) nitrate
Fe ³⁺	50 mM Iron(III) sulfate

5. Remove the unbound metal ions

Remove the excess of the metal ion solution by washing the column with 10 CV deionized water.

6. Equilibrate the column

Equilibrate the column with 5 – 10 CV of binding buffer (see Table 3 for recommended buffers). Other neutral buffers, with at least 10 mM of imidazole, can also be used.

Table 3. Recommended buffers for purification. Other buffers can be used.

Buffer	Composition
Binding buffer	50 mM sodium phosphate buffer, 300 mM NaCl, 10 mM imidazole, pH 8.0
Washing buffer	50 mM sodium phosphate buffer, 300 mM NaCl, 20 – 100 mM imidazole, pH 8.0
Elution buffer	50 mM sodium phosphate buffer, 300 mM NaCl, 300 mM imidazole, pH 8.0

Note: To avoid bacterial growth and poor column performance, use only freshly prepared and filtered buffers.

7. Apply the sample

Apply the sample at 0.5 – 1 mL/min for the GoBio Mini 1 mL or 2 – 5 mL/min for the GoBio Mini 5 mL columns. A too high flow rate may reduce the yield.

8. Wash

After sample application, remove unbound impurities by washing the column with 20 - 30 CV of washing buffer or until desired A_{280} nm absorbance of the wash fractions (e.g., 0.01 - 0.02) is obtained. The binding buffer can be used instead of the washing buffer if the target protein binding is weak. However, this may decrease the final purity. If a gradient elution is planned, the binding buffer may be used for washing since most of the impurities will be eluted earlier than the Histagged protein during the elution.

9. Elute

Alternative 1:	Desorb the target protein with 5 CV elution buffer.
Alternative 2:	For increased purity, gradient elution is recommended. For example, a gradient
	from 10 mM to 300 mM of imidazole over 20 CV can be applied.

10. Re-equilibrate

Before the next purification, re-equilibrate the column with 10 CV binding buffer.

11. Remove the elution buffer

Wash the column with 5 CV deionized water to remove the salts of the elution buffer.

12. Column storage

Equilibrate the column with 5 CV 20% ethanol for storage. Close the column using the cap and plug (included).

Purification additives

Metal ion charged GoBio Mini NTA and GoBio Mini IDA columns are compatible with a multitude of additives, including various buffer substances, salts, detergents and stabilizers. Integral membrane proteins can be purified in the presence of detergents. Denaturing agents such as guanidine-HCl or urea can be used, although they may denature the target protein. Proteins expressed as inclusion bodies often have an incomplete folding. Dissolution of the inclusion body followed by IMAC purification in the presence of a denaturing agent, and finally renaturation is sometimes done, although significant further development may be required to obtain native protein structure.

Note: The use of chelating substances and reducing agents should be avoided. If needed, Tris(2 carboxyethyl)phosphine (TCEP) is recommended as reducing agent.

Scale-up

Metal ion charged GoBio Mini NTA and GoBio Mini IDA 1 mL columns are commonly used for purification of up to 50 mg of protein sample, but a capacity of up to 70 mg/mL is often possible. However, this depends on the properties (mainly size) of the target protein. The capacity is also dependent on the sample composition and conditions used for the purification. Scale-up from a GoBio Mini 1 mL column can easily be done by using a GoBio Mini 5 mL column and applying a sample volume five times larger. GoBio Mini columns can be connected in series with a maximum of five columns (column stacking). This will increase the capacity accordingly. By connecting GoBio Mini columns in series, column volumes from 1 mL to 25 mL can be obtained. This means a binding capacity of 1000 mg of His-tagged protein can be achieved.

The GoBio column family is also available with other prepacked columns including these two resins, such as GoBio Screen 7x100 (3.8 mL), GoBio Prep 16x100 (20 mL), GoBio Prep 26x100 (53 mL) and GoBio Prod columns for manufacturing scale starting from 1 L, see "Related products".

GoBio Mini columns can be connected easily without accessories. The pressure drop across each column bed will be the same as for a single column, but the upstream columns will be exposed to a higher internal pressure since it is affected by the added pressure drops across the downstream columns. It may therefore be necessary to decrease the flow rate accordingly to avoid reaching the maximum pressure limit in the first column. If possible, the maximum pressure of the chromatography system should be set according to Table 4. Remember to take the system fluidics contribution to the pressure into account.

Table 4. Recommended maximum pressure settings for GoBio Mini columns connected in series. Notice that the maximum pressure over each column is always 3 bar.

No. of columns in series	Max pressure GoBio Mini 1 mL (bar)	Max pressure GoBio Mini 5 mL (bar)
1	3.0	3.0
2	6.0	6.0
3	9.0	9.0
4	12	10¹
5	15	10¹

¹ The maximum pressure is defined by the column hardware maximum pressure.

The column size should be selected based on the estimated amount of protein to be purified. A test run with a defined small volume of sample on a GoBio Mini 1 mL column should be used to estimate the concentration of the target protein in the sample. A general recommendation is to use 70 – 80% of the column binding capacity. For large sample volumes with low concentrations of the target protein, it may be suitable to use a larger column than the calculated one to allow higher sample flow rates, and consequently shorter application time. For example, using a 5 mL column instead of a 1 mL column allows a flow rate five times higher due to the larger cross-section of the column. Have in mind that too high flow rate may reduce the binding capacity.

For columns larger than 20 mL, it is recommended to pack a single column using bulk resin or using a prepacked column from the GoBio prepacked column family, as the limitations of column stacking will then impact chromatographic performance.

To find out more about Bio-Works chromatography products visit www.bio-works.com

Optimization

The following paragraphs will give indications on some parameters that can be tuned to find the optimal conditions for the purification.

Optimization of the binding

Low imidazole concentration

The sample and the binding buffer should contain a low concentration of imidazole, but not below 10 mM, to reduce unwanted binding of host cell proteins and to avoid pH effects that may interfere with the protein binding. Keep in mind that if the imidazole concentration is too high the His-tagged protein will not bind at all. Use high quality imidazole which has little or no absorbance at 280 nm.

Slightly basic pH

Binding of His-tagged proteins is preferably carried out at pH 7 – 8.5. At lower pH the histidine residues will be protonated (p K_a approx. 6) and will not bind to the column.

Tuning the flow rate

Binding of His-tagged proteins to a metal chelating column is a rather fast mechanism, and a high flow rate will usually not affect the yield when moderate loadings are applied. At low temperature or for exotic protein or sample composition, it may be useful to lower the flow rate.

Addition of a denaturing agent

If the target protein is insoluble or present as inclusion bodies it can be dissolved by using a denaturing agent (e.g., 8 M urea or 6 M guanidine-HCl). The denaturing agent should be included in all buffers during the purification. The protein is usually denatured by the treatment. In some cases, subsequent renaturation is desired.

Optimization of washing and elution

Prolonged or harsher wash

A continuously decreasing UV signal is an indication of unbound material being washed out. The washing buffer applied should be continued, until the UV signal is stable and the same as for the washing buffer. The binding affinity for some His-tagged proteins may be very strong due to extra His-residues on the protein surface or to multimeric properties. In this instance use more stringent washing conditions (higher concentration of imidazole), which can give higher purity.

Increased imidazole concentration

An additional washing step with a higher imidazole concentration in the washing buffer can be tested. Note that if the imidazole concentration is too high it may cause premature elution of the target protein.

Additives

In IMAC, 300 - 500 mM NaCl is usually included in the eluents to reduce electrostatic interactions. In rare cases, it may be worthwhile to optimize the ionic strength. Other parameters such as pH and additives can be considered for optimization to increase the purity and stability of the target protein.

Optimizing elution conditions

Elution can be performed using a high imidazole concentration (but rarely higher than 300 mM). A stronger binding may require higher imidazole concentrations for elution. Aggregates of Histagged protein bind via multiple tags, thus increasing the affinity. By optimizing the imidazole concentration, it is possible to elute the His-tagged protein separately from the aggregates.

Step elution

The optimal imidazole concentration is dependent on the purity and recovery requirements as well as the properties of the target protein and the sample. Applying gradient elution often provides

increased purity compared to step elution, but step elution may be desired to obtain the highest possible concentration of the target protein and when scaling up. To optimize the imidazole concentration for step elution an initial linear gradient test run should be performed to obtain suitable step elution conditions, see Figure 3.

Note: Remember to take the system dead volume into account when comparing the print-out of the gradient and the trace.

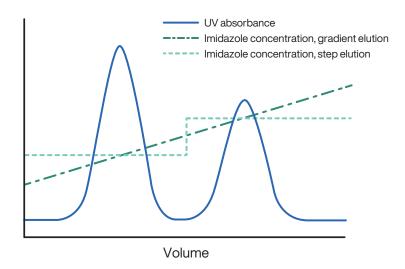


Figure 3. Optimization of step elution with imidazole. A test run with linear gradient elution gives information about suitable imidazole concentrations to be used in step elution.

Extra purification step

Optimization of the overall purification process by tuning the binding, washing and/or elution steps, is a possibility. However, an extra purification step based on another chromatography technique is recommended (see Additional purification).

Desalting and buffer exchange

Buffer exchange or desalting of a sample can be used before analysis and/or after purification with for example ion exchange chromatography. This can be carried out quickly and easily in lab-scale using GoBio Mini Dsalt 1 mL, GoBio Mini Dsalt 5 mL, GoBio Prep 16x100 Dsalt (20 mL) and GoBio Prep 26x100 Dsalt (53 mL) columns depending on sample volumes, see "Related products". These columns are also very useful alternatives to dialysis or when samples need to be processed rapidly to avoid degradation. For even larger sample volumes prepacked GoBio Prod columns starting from 1L are available or diafiltration can be used.

Additional purification

His-tagged protein purification on metal ion charged GoBio Mini columns gives high purity in a single step. For very high purity requirements, it can be necessary to add a second purification step. The additional purification step is used to remove remaining proteins and/or impurities from the sample. WorkBeads 40/1000 SEC, WorkBeads 40/100 SEC and WorkBeads 40/10 000 SEC resins facilitate the purification of target proteins of different size. WorkBeads 40S, WorkBeads 40Q and WorkBeads 40 DEAE resins are excellent for ion exchange chromatographic purification. These resins are also available in ready-to-use GoBio prepacked columns in several different sizes.

To find out more about Bio-Works chromatography products visit www.bio-works.com

Maintenance of the column

Cleaning-in-place (CIP) and recharging with metal ions

During purification impurities such as cell debris, lipids, nucleic acids and protein precipitates from the samples may gradually build up in the resin. The severity of this process depends on the type of sample applied to the column, and the pre-treatment of the sample. The bound impurities may reduce the performance of the packed column over time. Regular cleaning (Cleaning-in-place, CIP) keeps the resin clean, reduces the rate of further contamination, and prolongs the capacity, resolution and flow properties of the column. Cleaning using 1 M NaOH applied by a low reversed flow for 2 hours or overnight is often sufficient.

It is important to strip off the metal ions before cleaning and then recharge the resin with fresh metal ions. If the resin is packed in a column; stripping, cleaning and recharging the resin can be carried out as followed:

Wash with:

- 1. 5 CV deionized water
- 2. 10 CV 50 mM Na₂EDTA, pH 8.0
- 3. 10 CV 100 mM NaOH
- 4. 10 CV deionized water
- 5. 2 CV 50 mM metal salt solution in deionized water
- 6. 10 CV deionized water
- 7. 10 CV 20% ethanol (for storage)

Sanitization (reduction of microorganisms) can be done using combinations of NaOH and ethanol (e.g., incubation with a mixture of 0.5 M NaOH and 40% ethanol for 3 hours). The sanitization procedure and its effectiveness will depend on the microorganisms to be removed and needs to be evaluated for each case.

Storage

Equilibrate the column in 20% ethanol and close it securely using the included plug and cap. Store the column at 2 to 25°C.

Product information

	GoBio Mini NTA	GoBio Mini IDA	
Target substance	His-tagged proteins, proteins containing histidine, cysteine and/or tryptophan amino acid side chains	His-tagged proteins, proteins containing histidine, cysteine and/or tryptophan amino acid side chains	
Resin	WorkBeads 40 NTA	WorkBeads 40 IDA	
Matrix	Rigid, highly cross-linked agarose	Rigid, highly cross-linked agarose	
Average particle size $(D_{V50})^1$	45 μm	45 µm	
Ligand	Nitrilotriacetic acid (NTA)	Iminodiacetic acid (IDA)	
Column volume	1 mL 5 mL	1mL 5mL	
Column dimension	7 × 28 mm (1 mL) 13 × 38 mm (5 mL)	7 × 28 mm (1 mL) 13 × 38 mm (5 mL)	
Recommended flow rate ² GoBio Mini 1 mL GoBio Mini 5 mL	0.25 – 1 mL/min (37 – 150 cm/h) 1.25 – 5 mL/min (56 – 225 cm/h)	0.25 – 1 mL/min (37 – 150 cm/h) 1.25 – 5 mL/min (56 – 225 cm/h)	
Maximum flow rate ³ GoBio Mini 1 mL GoBio Mini 5 mL	5 mL/min (780 cm/h) 20 mL/min (900 cm/h)	5 mL/min (780 cm/h) 20 mL/min (900 cm/h)	
Maximum back pressure	0.3 MPa, 3 bar, 43 psi	0.3 MPa, 3 bar, 43 psi	
Chemical stability	Chelating substances (e.g. EDTA) will strip off the metal ions. Stripped column: 10 mM HCl (pH 2), 10 mM NaOH (pH 12), 100 mM sodium citrate-HCl (pH 3), 6 M guanidine-HCl		
pH stability	2 – 12 cleaning (stripped column) Do not keep the resin at low pH for prolonged time	2 - 12 cleaning (stripped column) Do not keep the resin at low pH for prolonged time	
Storage	2 to 25°C in 20% ethanol	2 to 25°C in 20% ethanol	

¹ The median particle size of the cumulative volume distribution.

GoBio prepacked column family

GoBio prepacked column family is developed for convenient, reproducible and fast results and includes columns with different sizes and formats.

GoBio Mini 1 mL and GoBio Mini 5 mL for small scale purification and screening using a shorter packed bed.

GoBio Screen 7x100 (3.8 mL) for reproducible process development including fast and easy optimization of methods and parameters.

GoBio Prep 16x100 (20 mL) and GoBio Prep 26x100 (53 mL) for lab-scale purifications and scaling up.

GoBio Prep 16x600 (120 mL) and GoBio Prep 26x600 (320 mL) for preparative lab-scale size exclusion chromatography.

GoBio Prod 80x200 (1 L), GoBio Prod 130x200 (2.7 L), GoBio Prod 200x200 (6 L), GoBio Prod 240x200 (9 L) and GoBio Prod 330x250 (21.4 L) for production-scale purifications.

Optimal flow rate during binding is depending on the sample. During column wash and elution, a flow rate of 1 mL/min and 5 mL/min can be used for 1 mL and 5 mL columns, respectively. Note: The maximum pressure the packed bed can withstand depends on the sample/liquid viscosity and chromatography resin characteristics. The pressure also depends on the tubing used to connect the column and the system restrictions after the column outlet.

³ Aqueous buffers at 20 °C. Decrease the maximum flow rate if the liquid has a higher viscosity. Higher viscosities can be caused by low temperature (use half of the maximum flow rate at 4 °C), or by additives (e.g. use half of the maximum flow rate for 20% ethanol).

Related products

Product name	Pack size ¹	Article number
Prepacked columns		
GoBio Mini NTA His-tag Screening kit 1 mL ²	1mL × 4	45 700 101
GoBio Mini NTA His-tag Screening kit 5 mL ²	5 mL × 4	45 700 102
GoBio Mini IDA His-tag Screening kit 1 mL²	1mL × 4	45 700 001
GoBio Mini IDA His-tag Screening kit 5 mL ²	5 mL × 4	45 700 002
GoBio Mini Dsalt 5 mL	5 mL × 5	45 360 107
GoBio Mini Ni-NTA 1 mL	1mL×5	45 655 103
GoBio Mini Ni-NTA 5 mL	5 mL × 5	45 655 107
GoBio Mini Ni-IDA 1 mL	1mL×5	45 655 003
GoBio Mini Ni-IDA 5 mL	5 mL × 5	45 655 007
GoBio Mini NiMAC 1 mL	1mL×5	45 655 313
GoBio Mini NiMAC 5 mL	5 mL × 5	45 655 317
GoBio Screen 7x100 NTA ³	3.8 mL × 1	55 602 001
GoBio Screen 7x100 IDA3	3.8 mL × 1	55 601 001
GoBio Prep 16x100 NTA ³	20 mL × 1	55 602 021
GoBio Prep 16x100 IDA ³	20 mL × 1	55 601 021
GoBio Prep 16x100 Dsalt ³	20 mL × 1	55 700 021
GoBio Prep 26x100 NTA ³	53 mL × 1	55 602 031
GoBio Prep 26x100 IDA ³	53 mL × 1	55 601 031
GoBio Prep 26x100 Dsalt	53 mL × 1	55 700 031
Bulk resins		
WorkBeads 40 NTA	25 mL 150 mL	40 602 001 40 602 003
WorkBeads 40 IDA	25 mL 300 mL	40 601 001 40 601 003
WorkBeads 40 Ni-NTA	25 mL 150 mL	40 651 001 40 651 003
WorkBeads 40 Ni-IDA	25 mL 150 mL	40 650 001 40 650 003
WorkBeads NiMAC	25 mL 150 mL	40 653 001 40 653 003
WorkBeads Dsalt	300 mL	40 360 003
Accessories		
Column plug male 1/16"	10	70 100 010
Column cap female 1/16"	10	70 100 020

 $^{^1}$ Other pack sizes can be found in the complete product list on <u>www.bio-works.com</u> 2 Includes one column each charged with Ni²¹, Co²⁺, Cu²⁺ or Zn²⁺

³ Packed on request.

Ordering information

Product name	Pack size	Article number
GoBio Mini NTA 1 mL	1 mL × 1 1 mL × 5 1 mL × 10	45 655 111 45 655 113 45 655 114
GoBio Mini NTA 5 mL	5 mL × 1 5 mL × 5 5 mL × 10	45 655 115 45 655 117 45 655 118
GoBio Mini IDA 1 mL	1 mL × 1 1 mL × 5 1 mL × 10	45 655 011 45 655 013 45 655 014
GoBio Mini IDA 5 mL	5 mL × 1 5 mL × 5 5 mL × 10	45 655 015 45 655 017 45 655 018

Orders: sales@bio-works.com or contact your local distributor.

For more information about local distributor and products visit <u>www.bio-works.com</u> or contact us at <u>info@bio-works.com</u>

bio-works.com

Bio-Works, WorkBeads and GoBio are trademarks of Bio-Works Technologies. All third-party trademarks are the property of their respective owners.

All goods and services are sold subject to Bio-Works terms and conditions of sale. Contact your local Bio-Works representative for the most current information.

Bio-Works, Virdings allé 18, 754 50 Uppsala, Sweden. For local office contact information, visit bio-works.com/contact.

IN 45 655 010 BA

